北京鹏怡电源科技有限公司销售部
BB蓄电池 , OTP蓄电池 , 松下蓄电池 , 汤浅蓄电池
瑞士12v80ah欧瑞克蓄电池6FM12-80 12V系列产品简介

欧瑞克蓄电池外壳变形的原因:

蓄电池变形不是突发的,往往有一个渐进的过程。当蓄电池在充电容量达到80%左右进入高电压充电区时,在正极板上先析出氧气,氧气通过隔板中的孔到达负极,在负极板上进行氧复活反应,反应过程中会产生热量。当充电容量达到90%时,氧气的产生速度增大,负极开始产生氢气。大量气体的增加使蓄电池内压超过开阀压力,安全阀打开,气体逸出,终表现为失水。随着蓄电池循环次数的增加,水分逐渐减少,导致蓄电池出现如下情况:热容减小。在蓄电池中热容较大的是水,水损失后,蓄电池热容大大减小,产生的热量使蓄电池温度升高很快。2)某些蓄电池出现极板不可逆硫酸盐化,内阻增大,充电时蓄电池发热,当温度上升到壳体的临界温度时,产生的热量不能得到充分的散发,将导致蓄电池壳体变形。3)由于失水后蓄电池中超细玻璃纤维隔板发生收缩现象,使之与正负极板的附着力变差,内阻增大,充放电过程中发热量加大。经过上述过程,蓄电池内部产生的热量只能经过蓄电池槽散失,如散热量小于发热量,即出现温度上升现象。温度上升,使蓄电池析气过电位降低,析气量增大,正极大量的氧气通过"通道"。在负极表面反应,发出大量的热量,使温度快速上升,形成恶性循环,即所谓的"热失控",终温度达到80%以上,即发生变形。

欧瑞克蓄电池老化的原因:    

阀控式比开口式电池更易产生的问题是负极板的硫酸化。这是由于:1)氧的循环引起的负极板较低的电位;2)在强酸电解质汇集的电池底部形成的酸的分层,在这种不流动,非循环的电解质系统中是很难避免的。这两个都可能在浮充条件下产生一定数量的残留硫酸盐,然后转变成性的硫酸盐形式。因此,当极板加速去活化时,可用的放电安时容量就会减小。随着负极板温度的升高,这种状况会更加恶化。由于氧循环反应的发生,负极板表面被氧化,相当数量的热释放出来。正极板群的腐蚀和脱落阀控式铅酸电池中,这种形式的性能变坏本来就更加严重。由于氧循环反应,负极活性物质被持续氧化生成硫酸铅,有效地维持了放电状态,因此降低了负极板的电位。而对于给定的浮充电压正极板群的电位则相应较高。因而氧化气氛加剧了,引起了更多的氧气的析出,使活性物质的腐蚀与脱落加剧。电池的干涸在使用期间气体再复合机制的有效率不是,水被电解生成*气和氧气的速度虽然低于相同大小的富液式电池的电解速率的2%,但水还是会逐渐失去。当失水是主要的失效原因时,电解质的比重将会增加,当比重由较初的1.30增至1.36时,表示失水度约达到25%。在失水度达到25%时,酸的高浓度加速了硫酸化,电解质比重又开始下降。电池电压直接正比于电解质比重,因此电池电压并不是电池健康状况的可靠显示。

欧瑞克蓄电池内部电阻的测量:

欧瑞克蓄电池的电导值越大其容量越高,电池电导和电池容量之间存在线性关系。国内对电池电导测量方法进行了研究,其电导测试数据表明:在某些情况下电导测试方法对评价VRLA电池的容量状况是有效的,但在另一些情形下,电池电导与电池容量之间的线性关系不复存在。许多因素会影响电池电导测量的准确度。如电池连接条或极柱表面的氧化层,连接条与端子之间的接触电阻等等。由于VRLA电池是贫液式设计,欧瑞克蓄电池因此电池内部气体对电池电导的测量有很大的影响。要想建立某一型号电池的标准电导值是非常困难的。

欧瑞克蓄电池性能的优越性:
电解液不分层设计简洁,免维护,可任意方向摆放安装,胶体蓄电池工作原理胶体电解液的主要成份为一种粒径近乎于纳米级的功能化合物,流变性较好,容易实施对铅蓄电池的配液灌装。胶体电解液进入蓄电池内部或充电若干小时后,会逐渐发生胶凝,使液态电解质转态为胶状物,胶体中添加有多种表面活性剂,有助于灌装蓄电池前抗胶凝,而且有助于灌装蓄电池后,防止极板硫酸盐化,减小对板栅的腐蚀,提高极板活性物质的反应利用率。胶体电池的优越性理想的循环使用电池优越的长时间放电性能适合于高、低温环境使用胶体电解液无流动性、电解液不分层电池使用寿命长准确的酸量控制、有效保护正极板电池可在未满充的情况下放电、不会损伤较铅酸电池自放电速率小、不会出现热失控 
欧瑞克蓄电池性能的优越性:       
正负极板栅由*的、添加稀土元素的合金浇铸而成,比普通铅钙合金浇铸而成的板栅其抗生长和腐蚀能力提高了 15%~25% ,大幅度提高使用寿命,而活物质主要由高纯度(99.99% 以上)的铅制成,并加入多种有机添加剂,使电池的自放电大幅度下降,同时多种有机添加剂共同作用使负极板表面收缩直线减少,电池的低温放电性能提高了 20% 。 电池极群组采用*的铸焊方式形成汇流排,相比一般厂家采用烧焊的方式组装电池,既可以更有效地避免虚假焊的发生,又避免控制焊接过程中的各种铅粒杂质进入电池内部,形成微短路。商品极板由于成本的原因只能使用自来水配来化成为熟极板,不可避免的带有各种离子杂质,使得组装成的电池自放电大。晟牌电池使用自制极板,采用*的电池内部化成技术 , 生极板组装成电池后加入分析纯*化成为熟极板,没有各种离子杂质混入电池内部,自放电更低,放电的持久性及深循环放电能力更高。应用高机械强度隔板和分析纯*电解液,同时电解液中加入二族盐类,电池电解液和隔板中 pbso4 含量减少 70% ,防止电池内部生成枝晶导致短路。
欧瑞克蓄电池正确的使用方法:
1.蓄电池的使用温度范围如下:在此温度范围以外使用,蓄电池有破损和变形的可能蓄电池的标准使用温度为25℃放电(机器使用时):-15℃~50℃充电:0℃~40℃ 保存:-15℃~40℃
2.请不要在变压器等的发热部附近使用蓄电池,如在发热部附近使用,会成为蓄电池的漏液、发热、爆炸等的原因。
3.请不要把蓄电池弄湿或浸在水和海水里,如果弄湿或浸在水里,蓄电池会被腐蚀,会成为触电和火灾的原因
4.请不要在炎热天气下的汽车内、直射阳光强的地方、火炉前面、火的旁边使用或保管蓄电池,如在这些场所使用或保存,有时会成为蓄电池漏液、火灾、爆炸的原因。
5.请不要在粉尘多的地方使用蓄电池,粉尘多的地方,有可能会成为短路的原因。如果在粉尘多的地方使用时,请定期进行检查。
欧瑞克蓄电池使用时的注意事项:
一、新电池的初充电  新的蓄电池在安装完毕后,一般要进行一次较长时间的充电,充电电源要按照说明书中的规定进行充电,待电池组充电完毕后,进行一次放电,放电后再次充电,目的是延长电池的使用寿命,提高电池的活性和充放电特性。  二、定期充放电 UPS电源内部的UPS蓄电池长期闲置不用或使UPS蓄电池长期处在浮充状态而不放电,会导致电池中大量的硫酸铅吸附到电池的阴极表面,形成所谓的电池阴极板的“硫酸盐化”,由于硫酸铅是一种绝缘体,它的形成必将对电池的充放电产生极不好的影响,因为在阴极板上形成的硫酸盐越多,电池的内阻越大,电池的可充放电性能越差,从而导致电池“老化”、“活性”下降,使蓄电池的使用寿命大大缩短。应该每隔3~4个月,人为地通过中断市电或通过软件/硬件控制手段将UPS的整流器置于关闭状态,让UPS中的蓄电池放电。对于这种为“激活”电池而进行的电池放电操作,它的放电时间以控制在正常放电时间的1/3~1/4为宜。  三、严禁深度放电  密封免维护UPS蓄电池的使用寿命与UPS蓄电池的放电深度密切相关。放电深度是指用户在UPS蓄电池使用的过程中,电池放出的安时数占它的标称容量安时数的百分比。深度放电会造成UPS蓄电池内部极板表面硫酸盐化,导致UPS蓄电池的内阻增大,严重时会使个别电池出现“反极”现象和电池的永9性损坏。电池的放电深度严重影响电池的使用寿命,非迫不得已,不要让电池处于深度  四、放电状态。  尽量避免过电流充电,过流充电易造成电池内部的正负极板弯曲,使极板表面的活性物质脱落,造成电池可供使用容量下降,严重的会造成电池内部极板短路而损坏。

欧瑞克蓄电池购买时的注意事项:    

1、查看蓄电池产品标志是否齐全。包括制造厂名、产品规格型号、制造日期、商标;查看内外标志是否*,尤其要检查产品本体是否有醒目标识,生产日期。

2、注意蓄电池的外观。查看是否有变形、裂纹、划痕及漏液痕迹。电池接线端子上应干净,无锈蚀,标志应清晰。

3、关注蓄电池产品标注的额定容量。电池标注的额定容量越大,电池放电时间越长,好不要购买无额定标注的电池,但要注意是否为电动车。

4、选购企业、大型企业的品牌电池。电池一般由专业电池生产厂提供,不同品牌、不同厂家生产的电池质量有优劣之别,价格也有高低之分。、大型企业规模大,技术强,售后服务好,电池质量有保证。

5、选购与蓄电池配套的、带自动控制的智能型充电器。合适的充电器能自动调节充电大小和时间,有利于延长电池的使用寿命。

欧瑞克蓄电池充电技术:

对于铅酸、镉镍、镍氢3类以水为溶剂的电解液蓄电池,为了使用上的安全、方便、长寿命和免维护,在*化学电源工作者数代人不懈的努力下,终于从大量的实验中发现了'内部氧循环'的理论机制,使得该3类蓄电池所有的充放电反应,能在一个设计完好的带阀控的密封容器中反复安全进行。即蓄电池在充电和过充电期间,正电极析出的氧到达负电极后,能全部被负电极吸收还原,关系为i(O2析出)=i(O2还原),因而,蓄电池在长期的充放电过程中,不会造成电解液中水的损耗,以此来保证蓄电池的循环使用寿命与充电的安全。这一理论,在能够准确控制充电电流和其他充电副反应,同时使环境因素影响较小的情况下,显然是正确的。遗憾的是,这个正确的理论,只是来自化学电源的研究者,长期以来未被电路工作者真正理解和重视。由此造成蓄电池技术的发展于充电技术的发展,从而导致了今天我们在实际使用蓄电池时,经常出现电池未达到设计的使用寿命,就出现了性能下降甚至报废的现象,针对蓄电池使用中存在的问题,我们用了8年的时间,对传统的蓄电池恒流、恒压充电技术,以及由该技术发展延伸出来的分段恒流、限流恒压等充电技术,进行了深入的分析与实验。

 、


展开全文
拨打电话 微信咨询 发送询价